MATH 245 F21, Exam 3 Solutions

1. Carefully define the following terms: symmetric difference, transitive

Given arbitrary sets R, S, their symmetric difference is the set given by $\{x:(x \in R \wedge x \notin$ $S) \vee(x \in S \wedge x \notin R)\}$. Warning: Thm. 8.12 gives two other sets that $R \Delta S$ is equal to, but they are not the definition. Given an arbitrary set S and an arbitrary relation R on S, we say that R is transitive if, for every $x, y, z \in S,(x R y \wedge y R z) \rightarrow x R z$ holds.
NOTE: the parentheses are essential, or else the expression is ambiguous. Other common errors include: not giving the categories, not using complete sentences, not using setbuilder notation correctly, not giving the quantifiers (for x, y, z) correctly.
2. Carefully state the following theorems: distributivity theorem (for sets), Cantor's theorem

Given arbitrary sets R, S, T, the distributivity theorem says that both $R \cap(S \cup T)=$ $(R \cap S) \cup(R \cap T)$ and $R \cup(S \cap T)=(R \cup S) \cap(R \cup T)$. Given any set S, Cantor's theorem says that $|S| \neq\left|2^{S}\right|$. NOTE: $|S|<\left|2^{S}\right|$ is not Cantor's theorem, it is a corollary.
3. Let $R=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=12 y\}, S=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=5 y\}, T=\{x \in \mathbb{Z}: \exists y \in$ $\mathbb{Z}, x=10 y\}$. Prove that $R \cap S \subseteq T$.

Let $x \in R \cap S$ be arbitrary. Then $x \in R \wedge x \in S$, which by simplification (twice) gives $x \in R$ and $x \in S$. Hence, there is some $y \in \mathbb{Z}$ with $x=12 y$ and there is some $t \in \mathbb{Z}$ with $x=5 t$. Note: it is important to use different letters here, not y for both.
Combining, we get $12 y=5 t$, so $5 \mid 12 y$. Since 5 is prime, either $5 \mid 12$ or $5 \mid y$. Since 5 doesn't divide 12 , we must have $5 \mid y$. Thus there is some $k \in \mathbb{Z}$ with $5 k=y$. Plugging into $x=12 y$, we get $x=12(5 k)=10(6 k)$. Since $6 k \in \mathbb{Z}$, we have proved $x \in T$.
4. Let S, T, U be sets with $S \subseteq T \subseteq U$. Prove that $T^{c} \subseteq S^{c}$.

Let $x \in T^{c}$ be arbitrary. Hence, $x \in U \backslash T$, and hence $x \in U \wedge x \notin T$. By simplification (twice), we get $x \in U$ and $x \notin T$. If $x \in S$, then (since $S \subseteq T$) we would get $x \in T$, which is impossible. Hence $x \notin S$. By conjunction, $x \in U \wedge x \notin S$. Hence $x \in U \backslash S$, and thus $x \in S^{c}$.
5. Let A, B, C be sets with $A \subseteq B \subseteq C$. Prove that $A \times B \subseteq B \times C$.

Let $x \in A \times B$ be arbitrary. Hence $x=(u, v)$ with $u \in A$ and $v \in B$. Since $A \subseteq B$, in fact $u \in B$. Since $B \subseteq C$, in fact $v \in C$. Hence $x=(u, v)$ where $u \in B$ and $v \in C$, so $x \in B \times C$.
6. Let $S=\{a, b, c\}$ and $T=2^{S}$. Find a relation R from T to S with $|R|=3$.

This problem is all about categories and notation. Many answers are possible. A correct answer must be: (1) a set; (2) containing exactly three elements; (3) each of which is an ordered pair; (4) whose first coordinate is a subset of S; and (5) whose second coordinate is an element of S. Here are three correct answers:

1. $R=\{(\emptyset, a),(\emptyset, b),(\emptyset, c)\}$.
2. $R=\{(\{a, b\}, a),(\{a\}, a),(\{a, b, c\}, a)\}$.
3. $R=\{(\{a\}, a),(\{b\}, a),(\{c\}, b)\}$.
4. Prove or disprove: There exists a set S with $|S| \geq 2$, for which the relation $S \times S$ is antisymmetric.
The statement is false. To disprove, we must begin by letting S be an arbitrary set with $|S| \geq 2$. Now, since S contains at least two elements, let a, b (with $a \neq b$) be two of those elements. $S \times S$ contains both (a, b) and (b, a), so it is not antisymmetric.
Note: if S can have 0 or 1 element, the statement becomes true $-S \times S$ is antisymmetric, vacuously. That's not relevant to this question, of course.
5. Prove: For all sets R, S, T, we have $R \cap(S \cup T) \subseteq(R \cap S) \cup(R \cap T)$.

Note: This is (part of) one of our theorems about sets. Don't use that theorem to prove itself.
Let R, S, T be arbitrary sets. Let $x \in R \cap(S \cup T)$ be arbitrary. Then $x \in R \wedge x \in S \cup T$, and therefore $x \in R \wedge(x \in S \vee x \in T)$. We apply the distributive theorem for propositions (a different theorem, from chapter 2) to conclude $(x \in R \wedge x \in S) \vee(x \in R \wedge x \in T)$. Hence $(x \in R \cap S) \vee(x \in R \cap T)$, and finally $x \in(R \cap S) \cup(R \cap T)$.
A common student error (worth 1 point) was neglecting to quantify sets - note that "For all sets R, S, T " appears after "Prove:". Compare with the phrasing "Let R, S, T be sets. Prove:", for which you would not need to quantify the sets (since they were already pre-quantified for you).
9. Prove or disprove: For all sets R, S, T, we have $R \backslash(S \backslash T)=(R \backslash S) \backslash T$.

The statement is false (although \supseteq is true). To disprove, we need explicit choices for sets R, S, T, as well as a careful calculation of all the sets involved. Many solutions are possible. For example, set $R=\{1,2\}, S=\{1,3\}, T=\{1,4\}$. Now, $S \backslash T=\{3\}$ and $R \backslash(S \backslash T)=\{1,2\}$. On the other hand, $R \backslash S=\{2\}$ and $(R \backslash S) \backslash T=\{2\}$. Lastly, we need to prove the two sets are not equal, for which we need an element that is in one but not the other. We have $1 \in R \backslash(S \backslash T)$ but $1 \notin(R \backslash S) \backslash T$.
10. Find any relation R on $S=\mathbb{Z}$ that simultaneously satisfies both:
(a) R is not symmetric; and (b) $R^{-1} \circ R$ is not reflexive. Be sure to justify your answer. Many solutions are possible. One of the simplest is $R=\{(1,2)\}$. Here $R^{-1}=\{(2,1)\}$ and $R^{-1} \circ R=\{(1,1)\}$. R is not symmetric because $(1,2) \in R$ but $(2,1) \notin R . R^{-1} \circ R$ is not reflexive because $(5,5) \notin R^{-1} \circ R$.
NOTE: For R to not be symmetric you need different integers x, y such that $(x, y) \in R$ but $(y, x) \notin R$. For $R^{-1} \circ R$ to not be reflexive, you need an integer x that does not appear in the first coordinate of R at all. [if $(x, y) \in R$, then $(y, x) \in R^{-1}$ and so $(x, x) \in R^{-1} \circ R$]

